A dual-dual mixed formulation for nonlinear exterior transmission problems
نویسندگان
چکیده
We combine a dual-mixed finite element method with a Dirichletto-Neumann mapping (derived by the boundary integral equation method) to study the solvability and Galerkin approximations of a class of exterior nonlinear transmission problems in the plane. As a model problem, we consider a nonlinear elliptic equation in divergence form coupled with the Laplace equation in an unbounded region of the plane. Our combined approach leads to what we call a dual-dual mixed variational formulation since the main operator involved has itself a dual-type structure. We establish existence and uniqueness of solution for the continuous and discrete formulations, and provide the corresponding error analysis by using Raviart-Thomas elements. The main tool of our analysis is given by a generalization of the usual Babuska-Brezzi theory to a class of nonlinear variational problems with constraints.
منابع مشابه
Second Order Mixed Symmetric Duality in Non-differentiable Multi-objective Mathematical Programming
A pair of Mond-Weir type second order mixed symmetric duals is presented for a class of non-differentiable multi-objective nonlinear programming problems with multiple arguments. We establish duality theorems for the new pair of dual models under second order generalized convexity assumptions. This mixed second order dual formulation unifies the two existing second order symmetric dual formulat...
متن کاملPrimal-dual exterior point method for convex optimization
We introduce and study the primal-dual exterior point (PDEP) method for convex optimization problems. The PDEP is based on the Nonlinear Rescaling (NR) multipliers method with dynamic scaling parameters update. The NR method at each step alternates finding the unconstrained minimizer of the Lagrangian for the equivalent problem with both Lagrange multipliers and scaling parameters vectors updat...
متن کاملNumerical analysis of a non-linear transmission problem with Signorini contact using dual-dual mixed-FEM and BEM — a priori and a posteriori error estimates
In this paper we generalize the approach in [5] and discuss an interface problem consisting of a non-linear partial differential equation in Ω ⊂ Rn (bounded, Lipschitz, n ≥ 2) and the Laplace equation in the unbounded exterior domain Ωc := R n\Ω̄ fulfilling some radiation condition, which are coupled by transmission conditions and Signorini conditions imposed on the interface. The interior pde i...
متن کاملDUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کاملA Primal-Dual Exterior Point Method for Nonlinear Optimization
In this paper, primal-dual methods for general nonconvex nonlinear optimization problems are considered. The proposed methods are exterior point type methods that permit primal variables to violate inequality constraints during the iterations. The methods are based on the exact penalty type transformation of inequality constraints and use a smooth approximation of the problem to form primal-dua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2001